مقالات

در مورد تاریخچه هوش مصنوعی

به بررسی هوش مصنوعی (artificial intelligence) می پردازیم،با ریور وب همراه باشید.

 

 

هوش مصنوعی

به عنوان شاخه‌ای از علوم کامپیوتر که با خودکارسازی رفتارهای هوشمندانه سروکار دارد. امکان تعریف دقیق هوش مصنوعی هم وجود ندارد. به طور کلی اصطلاح هوش مصنوعی برای تشریح کردن سیستم‌هایی به کار می‌رود که هدف آن‌ها استفاده از ماشین‌ها برای تقلید و شبیه‌سازی هوش انسانی و رفتارهای مرتبط با آن است.

دهه‌ی ۵۰ میلادی که «دانشگاه دارتموث» (Dartmouth College) در ایالات متحده یک پروژه‌ی تحقیقات تابستانی را به هوش مصنوعی مختص داد. ریشه‌های آن  را حتی می‌توان در عمق بیشتری از تاریخ و در فعالیت‌های «آلن نیوئل» (Allen Newell)، «هربرت ای. سیمون» (Herbert A. Simon) و «آلن تورینگ» (Alan Turing) دید.با این حال مقاله ی آن تا پیش از معرفی شدن ابرکامپیوتر «دیپ بلو» (Deep Blue) توسط شرکت IBM هنوز توجه جهانیان را به خود جلب نکرده بود. این ابرکامپیوتر اولین ماشینی بود که توانست قهرمان شطرنج جهان «گری کاسپارف» (Garry Kasparov) را در مسابقه‌ای که در سال ۱۹۹۶ میلادی برگزار شد شکست دهد.

 

هوش مصنوعی artificial intelligence

 

انواع هوش مصنوعی

 

Neural AI

هوش عصبی (Neural AI) در اواخر دهه‌ی ۸۰ میلادی در علوم کامپیوتر محبوبیت پیدا کرد. در این گونه، دانش با استفاده از نمادها نمایش داده نمی‌شود، بلکه به جای آن، نورون‌های مصنوعی و ارتباط میان آن‌ها نماینده‌ی دانش هستند. این هوش چیزی شبیه به یک مغز بازسازی شده است. در این روش دانش کسب شده به قطعاتی کوچک‌تر (نورون‌ها) خرد و سپس از آن گروه‌هایی متصل به هم تشکیل می‌شود.

Neural Networks

شبکه‌های عصبی (Neural Networks) در لایه‌هایی سازماندهی می‌شوند که با خطوطی شبیه‌سازی شده به یکدیگر متصل هستند. بالاترین لایه، لایه‌ی دریافت است. این لایه مانند حسگری عمل می‌کند که اطلاعات را برای پردازش دریافت می‌کند و آن‌ها را به پایین ترین لایه می‌فرستد. این رویداد پس از دریافت اطلاعات با حداقل دو لایه‌ی دیگر ادامه پیدا می‌کند که به صورت سلسه مراتبی روی هم قرار دارند و اطلاعات را با استفاده از پیوندها دسته‌بندی و ارسال می‌کنند.

Symbolic

نمادین (Symbolic) با نمادهایی انتزاعی کار می‌کند که برای نشان دادن دانش استفاده می‌شوند. هوش مصنوعی نمادین، هوش مصنوعی کلاسیکی است که بر اساس این ایده کار می‌کند که تفکر انسان را می‌توان در سطحی سلسله مراتبی و منطقی بازسازی کرد.

 

هوش مصنوعی artificial intelligence

 

 

یادگیری ماشین

سیستمی است که تجربه را به دانش تبدیل و این روش به سیستم این توانایی را می‌دهد که الگوها و قوانین را با سرعتی که همواره در حال افزایش است شناسایی کند. در انواع مختلف یادگیری ماشینی از هر دو نوع هوش مصنوعی نمادین و عصبی استفاده می‌شود.

یادگیری عمیق (Deep Learning) زیرگونه‌ای از یادگیری ماشینی است که اهمیت آن رو به افزایش می باشد. در این مورد تنها از هوش مصنوعی عصبی یا همان شبکه‌های عصبی استفاده می‌شود. اکثر کاربردهای امروزی آن بر پایه‌ی یادگیری عمیق هستند. به لطف امکان گسترش دادن سریع طراحی شبکه‌های عصبی و تبدیل کردن آن‌ها به سیستم‌هایی پیچیده‌تر و قوی‌تر با لایه‌های جدید، مقیاس یادگیری عمیق را می‌توان به سادگی تغییر داد و آن را با کاربردهای بسیار زیادی منطبق کرد.سه نوع مرحله یادگیری برای آموزش دادن شبکه‌های عصبی وجود دارد: تحت نظارت، بدون نظارت و یادگیری تقویتی ،این سه مرحله روش‌های متفاوت زیادی را مهیا می‌کنند تا بتوان نحوه‌ی تبدیل ورودی به خروجی دلخواه را تنظیم کرد.

 

Artificial intelligence

0 0 votes
امتیازدهی به مقاله
مشترک شدن
اطلاع رسانی کن
guest
0 نظرات
oldest
newest most voted
Inline Feedbacks
View all comments
دکمه بازگشت به بالا